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ABSTRACT Almost all variables in biology are nonsta-
tionarily stochastic. For these variables, the conventional tools
leave us a feeling that some valuable information is thrown
away and that a complex phenomenon is presented impre-
cisely. Here, we apply recent advances initially made in the
study of ocean waves to study the blood pressure waves in the
lung. We note first that, in a long wave train, the handling of
the local mean is of predominant importance. It is shown that
a signal can be described by a sum of a series of intrinsic mode
functions, each of which has zero local mean at all times. The
process of deriving this series is called the ‘‘empirical mode
decomposition method.’’ Conventionally, Fourier analysis
represents the data by sine and cosine functions, but no
instantaneous frequency can be defined. In the new way, the
data are represented by intrinsic mode functions, to which
Hilbert transform can be used. Titchmarsh [Titchmarsh, E. C.
(1948) Introduction to the Theory of Fourier Integrals (Oxford
Univ. Press, Oxford)] has shown that a signal and i times its
Hilbert transform together define a complex variable. From
that complex variable, the instantaneous frequency, instan-
taneous amplitude, Hilbert spectrum, and marginal Hilbert
spectrum have been defined. In addition, the Gumbel extreme-
value statistics are applied. We present all of these features of
the blood pressure records here for the reader to see how they
look. In the future, we have to learn how these features change
with disease or interventions.

We recorded the blood pressure in the pulmonary arterial
trunk (between the pulmonic valve and the bifurcation point
of the right and left pulmonary arteries). The recording was
done continuously with an implanted catheter as a part of a
research plan to study the remodeling of the three layers of
vascular tissues of the arterial wall in response to changes of
stresses in the tissues (1–6). Pulmonary arteries were chosen as
an object of tissue engineering research because blood pres-
sure in pulmonary arteries can be changed quickly and non-
invasively by changing the oxygen concentration in the gas that
the animal breathes. Blood pressure is a major parameter
related to the stress distribution in the blood vessel wall. The
present article is focused on the analysis of the blood pressure
records of a normal rat breathing normal atmosphere at sea
level. Fig. 1A shows a record over a 24-h period. Fig. 1 B and
C show segments recorded at an expanded time scale. It is seen
that the amplitude and frequency are variable. The changes are
nonstationary, and definitions are needed to know what the
heart rate, the mean blood pressure, and the amplitude of
pressure oscillations are. Our objective is to see how these
quantities can be characterized mathematically.

MATERIALS AND EXPERIMENTAL METHODS

For the purpose of long term recording of blood pressure, a
catheter must be implanted into an artery. The Riva–Rocci
cuff inflation method of blood pressure measurement based on
Korotkoff sounds cannot provide the desired data. We studied
adult male Sprague–Dawley rats under a protocol approved by
the University of California, San Diego Committee on Animal
Research. Rats purchased from Harlan–Sprague–Dawley were
given 3–7 days to acclimatize to their housing. Housing tem-
perature was controlled (70°Fy72°F) and a 12:12 h light–dark
cycle was imposed at 0600 and 1800 h. They had continuous
access to standard rat chow (Harlan–Sprague–Dawley) and
tap water.

During the implantation of the pressure probe, the rat must
be anesthetized. Halothane causes liver injury (7), and Nem-
butal affects blood pressure (8). We found that isoflurane
(1-chloro-2, 2, 2-trif luoroethyl dif luoromethyl ether) gas (9)
anesthetizes rats quickly and without untoward effect. We
installed in a fume hood an isoflurane delivery system, which
consisted of a compressed air line and an isoflurane vaporiz-
ing, cooling, and delivery apparatus. The compressed air line
(4 mm i.d.) was divided into two branches: one to the animal,
the other to the isoflurane delivery apparatus consisting of a
Pyrex bottle (Fisher Scientific) as a vaporizing chamber. Air
flow bubbled through the liquid isoflurane and was controlled
by a Nupro valve (6.35 mm i.d.) (Fisher Scientific) and adjusted
for the desired depth of anesthesia according to the animal’s
respiratory rate and reflexes to touching. The isoflurane–air
mixture was cooled in 250-ml Pyrex flask suspended in an ice
bath to prevent condensation in the tubing, which, in one
branch, goes to an anesthesia induction chamber (a transparent
vacuum desiccator, 4330 ml, Fisher Scientific) for quick initial
anesthetization and in another branch goes to a nose cone for
continuous operation. The anesthetized rat was placed on a
water-filled, temperature-controlled pad (American Phar-
maseal, Valencia, CA) with its nose loosely positioned within
the nose cone.

Instrumented Rat. Sterile technique was used to catheterize
the pulmonary artery of an anesthetized rat with a Micro-
Renathane implantation tubing (MRE 025, 0.305 mm i.d.,
0.635 mm o.d.; Braintree Scientific) with the aid of a trocar-like
Introducer. The MRE 025 catheter, 20 cm long, was marked
with permanent ink 7, 9, and 14 cm from the distal tip (the tip
inserted into the artery). The Introducer, 7 cm long, was a
PE-90 tubing (0.86 mm i.d., 1.27 mm o.d.). Its distal part (1 cm)
was bent 30° from the axis, the tip was carefully blunted to
avoid any cutting edges, and its surface was marked with
permanent ink 4, 5, and 7 cm from the distal tip. The mark at
7 cm was made to indicate the direction of the distal tip of the
Introducer.The publication costs of this article were defrayed in part by page charge
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The proximal end of the Introducer was first connected to
a Statham (Hato Rey, PR) P23ID pressure transducer with a
Silastic tubing (Dow-Corning). While observing the pressure
tracings on a Soltec 8K21 polygraph (Soltec, Sun Valley, CA),
we very gently inserted the Introducer into the jugular vein and
advanced through the right atrium to the right ventricle. The
location of the tip of the Introducer can be recognized by the
signature of the pressure trace. After the Introducer was
placed in the right ventricle, the tubing that was connected to
the pressure transducer was replaced by the MRE 025 cath-
eter, which was passed inside the Introducer. The proximal end
of the MRE 025 catheter was connected to a 40-cm long
Silastic tubing (1.016 mm i.d., 2.159 mm o.d.) attached to the
Statham pressure transducer. By gentle advancement of the
catheter within the Introducer, we cannulated the pulmonary
artery, with its tip position verified by the typical arterial
pressure signature. Then the Introducer was slipped out over
the catheter and removed. The catheter then was secured in the
jugular vein with sutures, tunneled s.c. to the back of the neck,
and protected with a jacket-swivel system, which allowed the
rat to move freely but did not allow scratching or biting of the
catheter.

Continuous Measurement of Pulmonary Arterial Pressure
in a Conscious and Unrestrained Rat. The free-moving rat
then was placed in a standard-sized cage and moved to a quiet
room that was maintained at '70° and illuminated by fluo-
rescent lighting from 0600 to 1800 h. The tubing leading from
the animal to the swivel was protected by a lightweight, highly
compliant open spiral Latex shield and was connected to an
infusion pump and a Statham P23ID transducer through a ‘‘T’’
tube. The catheter was irrigated continuously with heparinized
saline (20 unitsyml saline) at a rate of 0.6 mlyh pumped by a
RAZEL Syringe Pump (Model A-99, RAZEL Scientific In-
struments, Stamford, CN).

Pressure data were collected continuously by a computer
while the pressure waveform was recorded on an Astro-Med
recorder (Model MT8500, Astro-Med, West Warwick, RI).

The analog-to-digital conversion was accomplished by a data
translation board (DT31-EZ, Data Translation, Marlboro,
MA). The pressure waveform was sampled 100 pointsys each
minute over a 24-h period.

Data Analysis Methodology. The well known Fourier spec-
tral analysis works well for strictly periodic or stationary
random functions of time. To deal with nonperiodic or non-
stationary functions, a number of methods have been intro-
duced, such as the Spectrogram (10), the Wavelet analysis
(11–14), the Wigner–Ville distribution (15, 16), the Evolution-
ary Spectrum (17), the Modal Analysis (18), and some others,
all designed to modify the global representation of the Fourier
analysis. They all failed in one way or another as discussed by
Huang et al. (19, 20). For the present analysis, we use a new
method proposed by Huang et al. (20), namely, the ‘‘empirical
mode decomposition method,’’ which is explained below.

We adopted the spacing of the extrema as the time scale. A
sifting process was proposed to decompose any given set of
data into a set of intrinsic mode functions (IMF), which are
defined as any function that fulfills the following conditions: (i)
in the whole data set, the number of extrema and the number
of zero-crossings must either equal or differ at most by one and
(ii) at any time, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is
zero.

How to derive an intrinsic mode function from a set of data,
X(t)? Answer: by computing the envelopes and subtracting the
mean. To compute, one first identifies the successive extrema
of X(t), then the local maxima are connected by a cubic spine
as the upper envelope, and all of the local minima are similarly
connected as the lower envelope. The mean of these envelopes
is a function of time and is designated as m1(t). The difference
between the data X(t) and the mean m1(t) is computed and is
designated as the first component h1(t):

X~t! 2 m1~t! 5 h1~t! [1]

FIG. 1. Blood pressure in pulmonary arterial trunk of the rat (rat code: 12099701). (A) Twenty four-hour strip, from 12y9y97 1118 h to 12y10y97
1118 h. (B) One-hour strip 12y9 1118 to 1218 h. (C) Two 10-s strips. (D) A short section illustrating a curve linking systolic peaks. (E) Systolic
peaks in 1 h. (F) Diastolic peaks in 1 h.
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This h1(t) is almost an IMF, except that some error might be
introduced by the curve fitting process. To make sure, we treat
h1(t) as a new set of data, determine its upper and lower
envelopes, and compute their new mean m11(t). The differ-
ence, h1 2 m11 5 h11, is designated as h11(t). This h11(t) again
is treated as new data, and the process is repeated a number
of times until it converges. The convergent result is designated
by the C1(t). C1(t) is the first intrinsic mode function of the data
set X(t). It has zero local mean. Now, subtract C1(t) from the
data X(t) and call the difference ‘‘the first residue’’ R1(t)

X~t! 2 C1~t! 5 R1~t! [2]

The residue R1(t) is analyzed as new data by the same method.
The new mean is found, and the difference of R1(t) minus its
mean converges to a function of time, C2(t), which is the second
intrinsic mode function of the data X(t). It also has zero local
mean. The process can be continued until either the residue or
the intrinsic mode becomes less than a predetermined value of
no substantial consequence or the residue becomes a constant
or a monotonic function from which no more IMF can be
extracted. If the process takes n steps, then we have

X~t! 5 C1~t! 1 C2~t! 1 z z z Cn~t! 1 Rn~t! [3]

Now that the residue Rn is understood clearly, we will drop it
from further consideration. All C1

. . . Cn have zero mean. We
now perform a Hilbert transformation defined by Eq. 4 on
every term in Eq. 3. The Hilbert Transform of X(t) is desig-
nated as Y(t):

Y~t! 5
1
pE X~t9!

t 2 t9
dt9 , X~t! 5 2

1
pE Y~t9!

t 2 t9
dt9 [4]

Here the integral is defined in the sense of Cauchy principal
value. Hilbert has shown (21) that X(t) and Y(t) enjoy a
reciprocal relationship as shown in Eq. 4, and the complex
variable Z(t) 5 X(t) 1 iY(t) is an analytic function of t. Write
Z(t) in polar coordinates as

Z~t! 5 X~t! 1 iY~t! 5 a~t!exp@iu~t!# [5]

a~t! 5 @X2~t! 1 Y2~t!#
1⁄2, u~t! 5 arc tan@Y~t!yX~t!#. [6]

Huang et al. (19) defined the instantaneous frequency v(t) as
the derivative of u(t) with respect to time t:

v~t! 5 du~t!ydt [7]

and justified it in several ways. If v(t) is introduced into Eq. 5,
then Z(t) can be expressed as a function of the amplitude aj and
frequency vj of the IMFs:

Z~t! 5 O
J51

n

aj~t! expFiE
0

t

vj~t!dtG5 a~t! expFiE
0

t

vj~t!dtG [8]

The vanishing of the local means of C1
. . . Cn is very important

because aj(t), uj(t) are sensitive to the local means. For
example, if X(t) 5 sin t, then Y(t) 5 cos t, and Z(t) 5 sin t 1
icos t. But if X(t) 5 sin t 1 a 1 icos t, then Y(t) 5 cos t still,
and Z(t) 5 sin t 1 a 1 icos t. Thus, you see that a(t) and u(t)
are very much a function of a. So it is nice to have a 5 0.

The three variables a, v, and t are related by Eq. 8 as a
surface in three dimensions and can be drawn as contour map
on the planes of (v,t), (a,t), or (a,v). Any one of these
projections may be called a Hilbert Spectrum. The amplitude
as a function of v, t is called the Hilbert Amplitude Spectrum,
H(v,t). We also can define the Marginal Hilbert spectrum h(v)
as a function of frequency

h~v! 5 E
O

T

H~v,t!dt , [9]

which offers a measure of total amplitude (or energy) contri-
bution from each frequency value. It represents the cumulated
amplitude over the entire data span in a probabilistic sense.

Watching the animal while its pulmonary blood pressure was
recorded, we noticed that that high systolic peaks usually were
associated with animal motion: raising an arm or leg, reaching
for food or drink, etc. Naturally we ask: What is the highest
systolic peak in a given period? Gumbel (22) has shown that,
for an unlimited variate obeying a statistical distribution of the
exponential type, the probability that the largest value in a
sample of size n be equal to or less than a certain value x is given
by the Gumbel extreme-value distribution:

F~x! 5 exp{2exp@2a~x 2 u!#} [10]

in which a and u are parameters depending on n. The
parameter u is the mode and is the most probable value of x.
The inverse of the parameter a is a measure of dispersion,
called the Gumbel slope. The function T(x) 5 [1 2 F(x)]21 is
called the returned period and is the number of observations
required such that, on the average, there is one observation
equaling or exceeding x. Practical calculation is made simple by
using charts given in ref. 23. Methods to compute the confi-
dence limits are given in refs. 21–23.

RESULTS

Five healthy rats, weighing 360.2 6 6.7 g, were used in this
study. They were active after surgery. Average time lapse
between the end of operation and the start of data collection
was 43 min.

Fig. 1 A shows a 24-h record of blood pressure of a normal
rat measured in the pulmonary arterial trunk. Fig. 1B shows a
1-h strip. Fig. 1C shows two random 10-s strips, one more
‘‘regular’’ than the other. Fig. 1D shows how an envelop linking
the systolic pressure was drawn in a 10-s strip. Fig. 1 E and F
are the systolic peaks and diastolic troughs for the 1-h record
shown in Fig. 1B, obtained by connecting the successive peaks
and successive valleys, respectively.

Fig. 2A shows the Fourier spectrum for the 1-h data given
in Fig. 1B, from which we easily can identify the spectral peaks
at 1.5, 6.5, and 13 Hz. The 6.5-Hz peak represents the
heartbeats, and the 13-Hz peak represents its harmonics. The
1.5-Hz peak probably is related to respiration, but we are not
certain. The Fourier spectra for the two 10-s sections given in
Fig. 1C are presented in Fig. 2B in respective upper and lower
panels. The result of the 1-min window Fourier analysis for a
1-h data is given in Fig. 2C. In Fig. 2C, the locations of the
highest peaks of the Fourier spectra in every 1-min window are
plotted on the time–frequency plane. A perspective view of the
windowed 1-h and 10-h Fourier results are given in Fig. 2 D and
E to show the variation of the amplitudes of the signals. Finally,
a comparison of the Fourier (dotted line) and the Marginal
Hilbert (solid line) spectra defined by Eq. 9 are given in Fig.
2F for a typical irregular 10-s section (Fig. 1C, upper panel).

The results of the empirical mode decomposition method
are illustrated by sifting the two 10-s records shown in Fig. 1C.
The resulting IMF components are given in Fig. 3A and B for
the upper and lower panels of Fig. 1C, respectively. The
residual IMF R8 is constant in both cases. In Fig. 3B, the IMF
components have very different amplitudes; the most ener-
getic ones are C2, C3, and C4. The amplitude and the
periodicity of these three main components maintain very near
their respective constant levels. Their sum offers a strikingly
faithful representation of the signal variation as shown by
comparing the lower panels of Figs. 3C and 1C. The only

4818 Engineering: Huang et al. Proc. Natl. Acad. Sci. USA 95 (1998)
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FIG. 2. Fourier Spectrum (FS) of rat pulmonary blood pressure recording. (A) FS of the first hour data shown in Fig. 1B. (B) FS of two 10-s
strips shown in Fig. 1C. (C) FS of the first hour data. A plot of the locations (time and frequency) of the highest peaks of the FS in every 1-min
window. (D) FS, first hour. Plot of the amplitude of the spectrum as a function of the frequency in every 1-min window on the time–frequency
plane in linear scales. (E) FS, first 10 h. Similar to D but with an enlarged time span. (F) Fourier (dotted line) and Marginal Hilbert (solid line)
spectra of the first 10-s strip shown in Fig. 1C, Upper.

FIG. 3. The IMF and Hilbert Spectrum (HHT) of the blood pressure data. (A) IMF of the first 10-s strip of data shown in Fig. 1C, Upper. (B)
IMF of the second 10-s strip shown in Fig. 1C, Lower. (C) Upper: sum C11C21C3; Lower: sum C21C31C4 of the second 10-s strip. (D) Sum
C4–C8 of the second 10-s strip of data, IMF in B, is shown by the solid line, which reveals the slow variation of the blood pressure. The full signal,
which is shown in the lower panel of Fig. 1C, is replotted here by the dotted line. (E) HHT spectrum of the second 10-sc strip. (F) HHT spectrum
of the first 10-s strip. The residual R8 in both cases are zero.

Engineering: Huang et al. Proc. Natl. Acad. Sci. USA 95 (1998) 4819
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difference is the reference level at '26 cm H2O given by C8.
If one plots the sum of IMF components C4–C8 (solid line),
one will recover the slow variation of the pressure signal
(dotted line) as shown in Fig. 3D and the lower panel of Fig.
1C. The IMF components for the wave in the upper panel of
Fig. 1C are given in Fig. 3A. Large variation in both amplitudes
and periodicity are seen. The Hilbert Transforms of these IMF
components give the Hilbert spectrum shown in Fig. 3E for the
record in lower panel of Fig. 1C, showing that the most
prominent energy bands are centered at 6.5, 3, and 1.5 Hz.
These intra-wave frequency modulations as discussed by
Huang et al. (20) are indications of nonlinear dynamics. Fig. 3F
shows the Hilbert spectrum corresponding to Fig. 3A and the
upper panel of Fig. 1C. The wide fluctuations of the frequency
values make any visual mean estimation impossible. The
Hilbert spectrum can be integrated to give the marginal
Hilbert spectrum as given in Fig. 2F. Here, we can see the
prominent spectral peaks at 7 and 1.3 Hz. Comparison of the
marginal Hilbert spectrum with the Fourier spectrum indicates
that their mean peaks do line up. However, the Hilbert spectrum
clearly depicts the fluctuation of the frequency with time,
whereas the Fourier spectrum gives the distribution of energy
over frequencies without allowing the frequency of oscillation
to be variable in the whole period of the time window. The
basic difference between the spectral plots of Fig. 2C and Fig.
3 D and E lies in the stationarity hypothesis. Fig. 2C, the
Fourier spectrum, assumes stationary oscillation. Fig. 3 D and
E, the Hilbert spectra, are valid for nonstationary oscillations.

The statistical analysis of the extreme values of the mean
blood pressure is illustrated in Fig. 4. The raw data are given
in Fig. 4A. Because of the high fluctuation of the blood
pressure values, any running mean would be misleading for
there is no proper time scale to define the mean. To overcome
this difficulty, we resorted to a method of envelope-mean. The

procedure is to construct the envelopes for the systolic peaks
and diastolic troughs as discussed before. Because of the
nature of the data, even after one envelope smoothing, the
smoothed systolic and diastolic pressure values still seemed to
overlap over this time scale. So, we took the envelope of the
envelope and repeated the procedure six times. Even after this
smoothing, the results were still highly variable, as shown in
Fig. 4B for the mean value in 24 h. For a 1-h section, the mean,
systolic, and diastolic pressure values given in Fig. 4C are
separable.

To predict the maximum expected systolic pressure within a
given time duration, we collected data on the largest systolic
pressure in every 10-min segment of record. The set of extreme
values is tested against the Gumbel distribution by plotting the
probability on a Gumbel probability paper (ref. 23 and see refs.
21 and 22 for detailed methods). The results are given in Fig.
4D. The solid line is the fitted Gumbel distribution curve. The
dotted lines are the confidence interval. Fig. 4E gives the
corresponding results based on the largest systolic pressure in
successive 1-min sections. From the Gumbel slope (1ya in Eq.
10), we obtained the return period for any assumed extreme
systolic blood pressure as shown in Fig. 4F.

It is not the purpose of this article to explain the fluctuations
of the blood pressure in a normal animal but to recognize the
features of blood pressure records. The method described here
does offer a more comprehensive view of the blood pressure
fluctuation than the classical Fourier analysis. In more com-
prehensive experiments on determining the effects of hypoxia,
tissue remodeling, and diseases, it would be interesting to see
how the Fourier spectrum, Hilbert spectrum, intrinsic mode
functions, and Gumbel extreme-value statistics would change.
The applicability of this type of analysis to biology and
medicine is evident.

FIG. 4. (A) Oscillation of the mean blood pressure from 12y9y97 1118 to 12y10y97 1118 h (rat code: 12099701). (B) Oscillation of the mean
blood pressure (smoothed by method explained in text). (C) The oscillation of the mean, systolic, and diastolic pressure in one hour (12y9y97 1118
to 1218 h). (D) The Gumbel extreme value statistics of the maximum systolic blood pressure in successive 10-min periods from 12y12y97 1050 to
2150 h plotted against a reduced variate that is related to cumulative probability on a Gumbel distribution paper. (E) The Gumbel extreme value
statistics of a data set of the largest systolic pressure in successive 1-min periods. (F) The return period for any assumed extreme values of systolic
pressure, based on the Gumbel statistical distribution of the extreme systolic pressure recording taken on 12y12y97 1050 to 2150 h.

4820 Engineering: Huang et al. Proc. Natl. Acad. Sci. USA 95 (1998)
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